a01sa01to's competitive programming library. Requires C++20 or higher with GCC. This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/graph/eulerian-walk.hpp"隣接リスト Graph を与えられたとき、グラフにオイラー路 (辺を全部ちょうど一回通る路) が存在するかを判定する。
もし存在するなら、{ 頂点の index のリスト, 辺の index のリスト } を返す。 存在しない場合は nullopt を返す。
$O(n + m)$
eulerian_walk(size_t n_vertex, T edgelist, bool is_directed) -> optional<pair<vector<size_t>, vector<size_t>>>#pragma once
#include <algorithm>
#include <cassert>
#include <optional>
#include <utility>
#include <vector>
using namespace std;
#include "../_internal/graph-base.hpp"
#include "./connection.hpp"
namespace asalib::graph {
template<_internal::edge_list T>
optional<pair<vector<size_t>, vector<size_t>>> eulerian_walk(const size_t n, const T& edgelist, const bool is_directed) {
constexpr size_t None = -1;
// もし辺がなければオイラーグラフ、任意の頂点を返す
if (edgelist.empty()) [[unlikely]]
return make_pair(vector<size_t> { 0 }, vector<size_t> {});
// 辺がない頂点を除外したグラフを作成
size_t n_vertex_withedge = 0;
vector id(n, None);
for (const auto& p : edgelist) {
const auto &u = get<0>(p), v = get<1>(p);
if (id[u] == None) id[u] = n_vertex_withedge++;
if (id[v] == None) id[v] = n_vertex_withedge++;
}
vector idrev(n_vertex_withedge, None);
for (size_t i = 0; i < n; ++i)
if (id[i] != None) idrev[id[i]] = i;
vector Graph(n_vertex_withedge, vector<size_t>());
for (size_t i = 0; i < edgelist.size(); ++i) {
const auto& p = edgelist[i];
const auto &u = get<0>(p), v = get<1>(p);
Graph[id[u]].emplace_back(i);
if (!is_directed) Graph[id[v]].emplace_back(i);
}
// 連結でなければ存在しない
if (is_directed) {
// 基底無向グラフ
vector underlyingGraph(n_vertex_withedge, vector<size_t>());
for (const auto& p : edgelist) {
const auto &u = get<0>(p), v = get<1>(p);
underlyingGraph[id[u]].emplace_back(id[v]);
underlyingGraph[id[v]].emplace_back(id[u]);
}
if (!is_connected(underlyingGraph)) return nullopt;
}
else {
vector uGraph(n_vertex_withedge, vector<size_t>());
for (const auto& p : edgelist) {
const auto &u = get<0>(p), v = get<1>(p);
uGraph[id[u]].emplace_back(id[v]);
uGraph[id[v]].emplace_back(id[u]);
}
if (!is_connected(uGraph)) return nullopt;
}
// オイラーグラフとなるか判定
vector<size_t> indeg(n_vertex_withedge, 0), outdeg(n_vertex_withedge, 0);
for (const auto& p : edgelist) {
const auto &u = get<0>(p), v = get<1>(p);
++outdeg[id[u]], ++indeg[id[v]];
}
size_t start = None, end = None;
for (size_t i = 0; i < n_vertex_withedge; ++i) {
if (is_directed) {
if (indeg[i] == outdeg[i]) continue;
if (indeg[i] + 1 == outdeg[i]) {
if (start != None) return nullopt;
start = i;
continue;
}
if (indeg[i] == outdeg[i] + 1) {
if (end != None) return nullopt;
end = i;
continue;
}
return nullopt;
}
if ((indeg[i] + outdeg[i]) % 2 == 0) continue;
if (start == None)
start = i;
else if (end == None)
end = i;
else
return nullopt;
}
if ((start == None) xor (end == None)) return nullopt;
if (start == None) {
assert(end == None);
start = end = 0;
}
// グラフ探索パート
vector<bool> used(edgelist.size(), false);
// 適当にパスを見つけるやつ
auto find_path = [&](size_t from, size_t to, vector<size_t>& vs, vector<size_t>& eds) {
size_t now = from;
if (Graph[now].empty()) return false;
do {
assert(!Graph[now].empty());
size_t e_idx = Graph[now].back();
Graph[now].pop_back();
if (used[e_idx]) continue;
used[e_idx] = true;
eds.emplace_back(e_idx);
vs.emplace_back(now);
const auto& p = edgelist[e_idx];
if (id[get<0>(p)] == now) {
now = id[get<1>(p)];
}
else {
assert(now == id[get<1>(p)]);
now = id[get<0>(p)];
}
} while (now != to);
vs.emplace_back(to);
return true;
};
// start -> end のパスを作るパート
vector<size_t> vs = {}, eds = {};
find_path(start, end, vs, eds);
assert(vs.size() == eds.size() + 1);
eds.emplace_back(None);
// 別の道があれば寄り道して辺を全部使うパート (閉路になる)
vector<size_t> res_vs, res_eds;
for (size_t i = 0; i < eds.size(); ++i) {
vector<size_t> v, e;
v.emplace_back(vs[i]), e.emplace_back(eds[i]);
while (!v.empty()) {
assert(v.size() == e.size());
size_t now = v.back();
size_t e_idx = e.back();
vector<size_t> tmpvs, tmpeds;
if (find_path(now, now, tmpvs, tmpeds)) {
assert(tmpvs.front() == now && tmpvs.back() == now);
assert(tmpvs.size() == tmpeds.size() + 1);
tmpvs.pop_back();
ranges::reverse(tmpvs);
ranges::reverse(tmpeds);
for (const auto& ver : tmpvs) v.emplace_back(ver);
for (const auto& edg : tmpeds) e.emplace_back(edg);
}
else {
v.pop_back(), e.pop_back();
res_vs.emplace_back(now);
res_eds.emplace_back(e_idx);
}
}
}
assert(res_eds.back() == None);
res_eds.pop_back();
assert(res_vs.size() == res_eds.size() + 1);
assert(res_eds.size() == edgelist.size());
// 元の頂点番号に戻す
vector<size_t> vertexes_original;
for (const auto& v : res_vs) vertexes_original.emplace_back(idrev[v]);
return make_pair(vertexes_original, res_eds);
}
} // namespace asalib::graph#line 2 "library/graph/eulerian-walk.hpp"
#include <algorithm>
#include <cassert>
#include <optional>
#include <utility>
#include <vector>
using namespace std;
#line 2 "library/_internal/graph-base.hpp"
#include <concepts>
#include <cstddef>
#include <ranges>
#line 7 "library/_internal/graph-base.hpp"
using namespace std;
namespace asalib::_internal {
// vector<vector<int>> とかの隣接リストを表す型
template<class T>
concept adjacency_list = requires(T t) {
{ t.size() } -> convertible_to<size_t>;
{ t[0] } -> ranges::range;
{ *ranges::begin(t[0]) } -> convertible_to<size_t>;
};
// 辺のリストを表す型
// 重み付きも考慮し pair<int, int> と tuple<int, int, int> の両方を許容
template<class T>
concept edge_list = requires(T t) {
{ t.size() } -> convertible_to<size_t>;
{ get<0>(t[0]) } -> convertible_to<size_t>;
{ get<1>(t[0]) } -> convertible_to<size_t>;
};
} // namespace asalib::_internal
#line 2 "library/graph/connection.hpp"
#line 4 "library/graph/connection.hpp"
using namespace std;
#line 7 "library/graph/connection.hpp"
namespace asalib::graph {
template<_internal::adjacency_list T>
bool is_connected(const T& adj_list) {
vector<bool> visited(adj_list.size(), false);
vector<int> st;
st.emplace_back(0);
visited[0] = true;
while (!st.empty()) {
int v = st.back();
st.pop_back();
for (const auto& u : adj_list[v]) {
if (!visited[u]) {
visited[u] = true;
st.emplace_back(u);
}
}
}
for (const auto v : visited) {
if (!v) return false;
}
return true;
}
} // namespace asalib::graph
#line 12 "library/graph/eulerian-walk.hpp"
namespace asalib::graph {
template<_internal::edge_list T>
optional<pair<vector<size_t>, vector<size_t>>> eulerian_walk(const size_t n, const T& edgelist, const bool is_directed) {
constexpr size_t None = -1;
// もし辺がなければオイラーグラフ、任意の頂点を返す
if (edgelist.empty()) [[unlikely]]
return make_pair(vector<size_t> { 0 }, vector<size_t> {});
// 辺がない頂点を除外したグラフを作成
size_t n_vertex_withedge = 0;
vector id(n, None);
for (const auto& p : edgelist) {
const auto &u = get<0>(p), v = get<1>(p);
if (id[u] == None) id[u] = n_vertex_withedge++;
if (id[v] == None) id[v] = n_vertex_withedge++;
}
vector idrev(n_vertex_withedge, None);
for (size_t i = 0; i < n; ++i)
if (id[i] != None) idrev[id[i]] = i;
vector Graph(n_vertex_withedge, vector<size_t>());
for (size_t i = 0; i < edgelist.size(); ++i) {
const auto& p = edgelist[i];
const auto &u = get<0>(p), v = get<1>(p);
Graph[id[u]].emplace_back(i);
if (!is_directed) Graph[id[v]].emplace_back(i);
}
// 連結でなければ存在しない
if (is_directed) {
// 基底無向グラフ
vector underlyingGraph(n_vertex_withedge, vector<size_t>());
for (const auto& p : edgelist) {
const auto &u = get<0>(p), v = get<1>(p);
underlyingGraph[id[u]].emplace_back(id[v]);
underlyingGraph[id[v]].emplace_back(id[u]);
}
if (!is_connected(underlyingGraph)) return nullopt;
}
else {
vector uGraph(n_vertex_withedge, vector<size_t>());
for (const auto& p : edgelist) {
const auto &u = get<0>(p), v = get<1>(p);
uGraph[id[u]].emplace_back(id[v]);
uGraph[id[v]].emplace_back(id[u]);
}
if (!is_connected(uGraph)) return nullopt;
}
// オイラーグラフとなるか判定
vector<size_t> indeg(n_vertex_withedge, 0), outdeg(n_vertex_withedge, 0);
for (const auto& p : edgelist) {
const auto &u = get<0>(p), v = get<1>(p);
++outdeg[id[u]], ++indeg[id[v]];
}
size_t start = None, end = None;
for (size_t i = 0; i < n_vertex_withedge; ++i) {
if (is_directed) {
if (indeg[i] == outdeg[i]) continue;
if (indeg[i] + 1 == outdeg[i]) {
if (start != None) return nullopt;
start = i;
continue;
}
if (indeg[i] == outdeg[i] + 1) {
if (end != None) return nullopt;
end = i;
continue;
}
return nullopt;
}
if ((indeg[i] + outdeg[i]) % 2 == 0) continue;
if (start == None)
start = i;
else if (end == None)
end = i;
else
return nullopt;
}
if ((start == None) xor (end == None)) return nullopt;
if (start == None) {
assert(end == None);
start = end = 0;
}
// グラフ探索パート
vector<bool> used(edgelist.size(), false);
// 適当にパスを見つけるやつ
auto find_path = [&](size_t from, size_t to, vector<size_t>& vs, vector<size_t>& eds) {
size_t now = from;
if (Graph[now].empty()) return false;
do {
assert(!Graph[now].empty());
size_t e_idx = Graph[now].back();
Graph[now].pop_back();
if (used[e_idx]) continue;
used[e_idx] = true;
eds.emplace_back(e_idx);
vs.emplace_back(now);
const auto& p = edgelist[e_idx];
if (id[get<0>(p)] == now) {
now = id[get<1>(p)];
}
else {
assert(now == id[get<1>(p)]);
now = id[get<0>(p)];
}
} while (now != to);
vs.emplace_back(to);
return true;
};
// start -> end のパスを作るパート
vector<size_t> vs = {}, eds = {};
find_path(start, end, vs, eds);
assert(vs.size() == eds.size() + 1);
eds.emplace_back(None);
// 別の道があれば寄り道して辺を全部使うパート (閉路になる)
vector<size_t> res_vs, res_eds;
for (size_t i = 0; i < eds.size(); ++i) {
vector<size_t> v, e;
v.emplace_back(vs[i]), e.emplace_back(eds[i]);
while (!v.empty()) {
assert(v.size() == e.size());
size_t now = v.back();
size_t e_idx = e.back();
vector<size_t> tmpvs, tmpeds;
if (find_path(now, now, tmpvs, tmpeds)) {
assert(tmpvs.front() == now && tmpvs.back() == now);
assert(tmpvs.size() == tmpeds.size() + 1);
tmpvs.pop_back();
ranges::reverse(tmpvs);
ranges::reverse(tmpeds);
for (const auto& ver : tmpvs) v.emplace_back(ver);
for (const auto& edg : tmpeds) e.emplace_back(edg);
}
else {
v.pop_back(), e.pop_back();
res_vs.emplace_back(now);
res_eds.emplace_back(e_idx);
}
}
}
assert(res_eds.back() == None);
res_eds.pop_back();
assert(res_vs.size() == res_eds.size() + 1);
assert(res_eds.size() == edgelist.size());
// 元の頂点番号に戻す
vector<size_t> vertexes_original;
for (const auto& v : res_vs) vertexes_original.emplace_back(idrev[v]);
return make_pair(vertexes_original, res_eds);
}
} // namespace asalib::graph