a01sa01to's competitive programming library.
#include "library/_internal/graph/eulerian-walk.hpp"
#pragma once
#include <cassert>
#include <deque>
#include <functional>
#include <queue>
#include <vector>
using namespace std;
#include "../../data-structure/graph.hpp"
namespace asalib {
namespace _internal {
namespace graph {
template<bool is_directed>
pair<vector<size_t>, vector<size_t>> eulerian_walk(const size_t& n, const edgelist_t& Edges, const size_t& start_v, const size_t& end_v) {
// グラフを変換するパート
vector<queue<size_t>> Graph(n);
for (size_t i = 0; i < Edges.size(); ++i) {
const auto& [u, v] = Edges[i];
Graph[u].push(i);
if constexpr (!is_directed) Graph[v].push(i);
}
vector<bool> used(Edges.size(), false);
// 適当にパスを見つけるやつ (これはオイラー路が存在することが確定してるからできる技)
auto find_path = [&](size_t from, size_t to, vector<size_t>& vs, vector<size_t>& eds) {
size_t now = from;
if (Graph[now].empty()) return false;
do {
assert(!Graph[now].empty());
size_t e_idx = Graph[now].front();
Graph[now].pop();
if (used[e_idx]) continue;
used[e_idx] = true;
eds.push_back(e_idx);
vs.push_back(now);
const auto& [u, v] = Edges[e_idx];
if (u == now) {
now = v;
}
else {
assert(now == v);
now = u;
}
} while (now != to);
vs.push_back(to);
return true;
};
// 適当に start_v -> end_v のパスを作るパート
vector<size_t> vs = {}, eds = {};
find_path(start_v, end_v, vs, eds);
assert(vs.size() == eds.size() + 1);
constexpr size_t ign = -1;
eds.push_back(ign);
// 別の道があれば寄り道して辺を全部使うパート (閉路になるはず)
vector<size_t> res_vs, res_eds;
for (size_t i = 0; i < eds.size(); ++i) {
stack<size_t> v, e;
v.push(vs[i]), e.push(eds[i]);
while (!v.empty()) {
assert(v.size() == e.size());
size_t now = v.top();
size_t e_idx = e.top();
vector<size_t> tmpvs, tmpeds;
if (find_path(now, now, tmpvs, tmpeds)) {
assert(tmpvs.front() == now && tmpvs.back() == now);
assert(tmpvs.size() == tmpeds.size() + 1);
tmpvs.pop_back();
reverse(tmpvs.begin(), tmpvs.end());
reverse(tmpeds.begin(), tmpeds.end());
for (const auto& ver : tmpvs) v.push(ver);
for (const auto& edg : tmpeds) e.push(edg);
}
else {
v.pop(), e.pop();
res_vs.push_back(now);
res_eds.push_back(e_idx);
}
}
}
assert(res_eds.back() == ign);
res_eds.pop_back();
assert(res_vs.size() == res_eds.size() + 1);
assert(res_eds.size() == Edges.size());
return make_pair(res_vs, res_eds);
}
} // namespace graph
} // namespace _internal
} // namespace asalib
#line 2 "library/_internal/graph/eulerian-walk.hpp"
#include <cassert>
#include <deque>
#include <functional>
#include <queue>
#include <vector>
using namespace std;
#line 2 "library/data-structure/graph.hpp"
#line 4 "library/data-structure/graph.hpp"
#include <optional>
#line 6 "library/data-structure/graph.hpp"
using namespace std;
#line 2 "library/_internal/graph-base.hpp"
#include <concepts>
#include <type_traits>
using namespace std;
namespace asalib {
namespace _internal {
class graph_base {};
class notweighted_graph_base: public graph_base {};
class weighted_graph_base: public graph_base {};
template<typename T>
concept is_graph = is_base_of_v<graph_base, T>;
template<typename T>
concept notweighted_graph = is_base_of_v<notweighted_graph_base, T>;
template<typename T>
concept weighted_graph = is_base_of_v<weighted_graph_base, T>;
using adjlist_t = vector<vector<pair<size_t, size_t>>>;
using edgelist_t = vector<pair<size_t, size_t>>;
} // namespace _internal
} // namespace asalib
#line 9 "library/data-structure/graph.hpp"
namespace asalib {
namespace graph {
class graph: public _internal::notweighted_graph_base {
public:
graph(): n_vertex(0), n_edge(0) {}
explicit graph(size_t n_vertex): n_vertex(n_vertex), n_edge(0) {
adj_list.reserve(n_vertex);
adj_list.resize(n_vertex);
}
void add_edge(size_t v1, size_t v2) {
assert(0 <= v1 && v1 < n_vertex);
assert(0 <= v2 && v2 < n_vertex);
adj_list[v1].push_back({ v2, n_edge });
adj_list[v2].push_back({ v1, n_edge });
edge_list.push_back({ v1, v2 });
++n_edge;
}
// (v1, v2)
pair<size_t, size_t> get_edge(size_t edgeId) const {
assert(0 <= edgeId && edgeId < n_edge);
return edge_list[edgeId];
}
// (v2, edgeId)
vector<pair<size_t, size_t>> get_adj(size_t vertex) const {
assert(0 <= vertex && vertex < n_vertex);
return adj_list[vertex];
}
// ---------- prototype ---------- //
optional<pair<vector<size_t>, vector<size_t>>> cycle() const;
bool is_connected() const;
optional<pair<vector<size_t>, vector<size_t>>> eulerian_walk() const;
private:
size_t n_vertex, n_edge;
asalib::_internal::adjlist_t adj_list;
asalib::_internal::edgelist_t edge_list;
};
} // namespace graph
} // namespace asalib
#line 11 "library/_internal/graph/eulerian-walk.hpp"
namespace asalib {
namespace _internal {
namespace graph {
template<bool is_directed>
pair<vector<size_t>, vector<size_t>> eulerian_walk(const size_t& n, const edgelist_t& Edges, const size_t& start_v, const size_t& end_v) {
// グラフを変換するパート
vector<queue<size_t>> Graph(n);
for (size_t i = 0; i < Edges.size(); ++i) {
const auto& [u, v] = Edges[i];
Graph[u].push(i);
if constexpr (!is_directed) Graph[v].push(i);
}
vector<bool> used(Edges.size(), false);
// 適当にパスを見つけるやつ (これはオイラー路が存在することが確定してるからできる技)
auto find_path = [&](size_t from, size_t to, vector<size_t>& vs, vector<size_t>& eds) {
size_t now = from;
if (Graph[now].empty()) return false;
do {
assert(!Graph[now].empty());
size_t e_idx = Graph[now].front();
Graph[now].pop();
if (used[e_idx]) continue;
used[e_idx] = true;
eds.push_back(e_idx);
vs.push_back(now);
const auto& [u, v] = Edges[e_idx];
if (u == now) {
now = v;
}
else {
assert(now == v);
now = u;
}
} while (now != to);
vs.push_back(to);
return true;
};
// 適当に start_v -> end_v のパスを作るパート
vector<size_t> vs = {}, eds = {};
find_path(start_v, end_v, vs, eds);
assert(vs.size() == eds.size() + 1);
constexpr size_t ign = -1;
eds.push_back(ign);
// 別の道があれば寄り道して辺を全部使うパート (閉路になるはず)
vector<size_t> res_vs, res_eds;
for (size_t i = 0; i < eds.size(); ++i) {
stack<size_t> v, e;
v.push(vs[i]), e.push(eds[i]);
while (!v.empty()) {
assert(v.size() == e.size());
size_t now = v.top();
size_t e_idx = e.top();
vector<size_t> tmpvs, tmpeds;
if (find_path(now, now, tmpvs, tmpeds)) {
assert(tmpvs.front() == now && tmpvs.back() == now);
assert(tmpvs.size() == tmpeds.size() + 1);
tmpvs.pop_back();
reverse(tmpvs.begin(), tmpvs.end());
reverse(tmpeds.begin(), tmpeds.end());
for (const auto& ver : tmpvs) v.push(ver);
for (const auto& edg : tmpeds) e.push(edg);
}
else {
v.pop(), e.pop();
res_vs.push_back(now);
res_eds.push_back(e_idx);
}
}
}
assert(res_eds.back() == ign);
res_eds.pop_back();
assert(res_vs.size() == res_eds.size() + 1);
assert(res_eds.size() == Edges.size());
return make_pair(res_vs, res_eds);
}
} // namespace graph
} // namespace _internal
} // namespace asalib