a01sa01to's competitive programming library.
#include "library/graph/eulerian-walk.hpp"
隣接リスト Graph
を与えられたとき、グラフにオイラー路 (辺を全部ちょうど一回通る路) が存在するかを判定する。
もし存在するなら、{ 頂点の index のリスト, 辺の index のリスト } を返す。 存在しない場合は nullopt を返す。
$O(n + m)$
digraph.eulerian_walk() -> optional<pair<vector<size_t>, vector<size_t>>>
graph.eulerian_walk() -> optional<pair<vector<size_t>, vector<size_t>>>
#pragma once
#include <concepts>
#include <optional>
#include <queue>
#include <utility>
#include <vector>
using namespace std;
#include "../_internal/graph/eulerian-walk.hpp"
#include "../data-structure/digraph.hpp"
#include "../data-structure/graph.hpp"
#include "./connection.hpp"
namespace asalib {
namespace graph {
optional<pair<vector<size_t>, vector<size_t>>> digraph::eulerian_walk() const {
constexpr size_t None = -1;
// もし辺がなければオイラーグラフ、任意の頂点を返す
if (edge_list.empty()) [[unlikely]]
return make_pair(vector<size_t> { 0 }, vector<size_t> {});
// 辺がない頂点を除外したグラフを作る
size_t n_vertex_withedge = 0;
vector<size_t> id(n_vertex, None);
for (const auto& [u, v] : edge_list) {
if (id[u] == None) id[u] = n_vertex_withedge++;
if (id[v] == None) id[v] = n_vertex_withedge++;
}
vector<size_t> idrev(n_vertex_withedge, None);
for (size_t i = 0; i < n_vertex; ++i)
if (id[i] != None) idrev[id[i]] = i;
asalib::graph::digraph newGraph(n_vertex_withedge);
for (const auto& [u, v] : edge_list) newGraph.add_edge(id[u], id[v]);
// 有向グラフの場合、基底無向グラフが連結でなければ存在しない
if (!newGraph.underlying_graph.is_connected()) return nullopt;
// オイラーグラフとなるか判定
vector<size_t> in(n_vertex_withedge, 0), out(n_vertex_withedge, 0);
for (const auto& [u, v] : edge_list) ++out[id[u]], ++in[id[v]];
size_t start = None, end = None;
for (size_t i = 0; i < n_vertex_withedge; ++i) {
if (in[i] == out[i]) continue;
if (in[i] + 1 == out[i]) {
if (start != None) return nullopt;
start = i;
continue;
}
if (in[i] == out[i] + 1) {
if (end != None) return nullopt;
end = i;
continue;
}
return nullopt;
}
if ((start == None) xor (end == None)) return nullopt;
if (start == None) {
assert(end == None);
start = end = 0;
}
auto [vertexes, edges] = asalib::_internal::graph::eulerian_walk<true>(n_vertex_withedge, newGraph.edge_list, start, end);
vector<size_t> vertexes_original;
for (const auto& v : vertexes) vertexes_original.push_back(idrev[v]);
return make_pair(vertexes_original, edges);
}
optional<pair<vector<size_t>, vector<size_t>>> graph::eulerian_walk() const {
constexpr size_t None = -1;
// もし辺がなければオイラーグラフ、任意の頂点を返す
if (edge_list.empty()) [[unlikely]]
return make_pair(vector<size_t> { 0 }, vector<size_t> {});
// 辺のない頂点を除外したグラフを作る
size_t n_vertex_withedge = 0;
vector<size_t> id(n_vertex, None);
for (const auto& [u, v] : edge_list) {
if (id[u] == None) id[u] = n_vertex_withedge++;
if (id[v] == None) id[v] = n_vertex_withedge++;
}
vector<size_t> idrev(n_vertex_withedge, None);
for (size_t i = 0; i < n_vertex; ++i)
if (id[i] != None) idrev[id[i]] = i;
asalib::graph::graph newGraph(n_vertex_withedge);
for (const auto& [u, v] : edge_list) newGraph.add_edge(id[u], id[v]);
// 連結でなければ存在しない
if (!newGraph.is_connected()) return nullopt;
vector<size_t> deg(n_vertex_withedge, 0);
for (const auto& [u, v] : edge_list) ++deg[id[u]], ++deg[id[v]];
size_t start = None, end = None;
for (size_t i = 0; i < n_vertex_withedge; ++i) {
if (deg[i] % 2 == 0) continue;
if (start == None)
start = i;
else if (end == None)
end = i;
else
return nullopt;
}
if (start != None && end == None) return nullopt;
if (start == None) {
assert(end == None);
start = end = 0;
}
auto [vertexes, edges] = asalib::_internal::graph::eulerian_walk<false>(n_vertex_withedge, newGraph.edge_list, start, end);
vector<size_t> vertexes_original;
for (const auto& v : vertexes) vertexes_original.push_back(idrev[v]);
return make_pair(vertexes_original, edges);
}
} // namespace graph
} // namespace asalib
#line 2 "library/graph/eulerian-walk.hpp"
#include <concepts>
#include <optional>
#include <queue>
#include <utility>
#include <vector>
using namespace std;
#line 2 "library/_internal/graph/eulerian-walk.hpp"
#include <cassert>
#include <deque>
#include <functional>
#line 8 "library/_internal/graph/eulerian-walk.hpp"
using namespace std;
#line 2 "library/data-structure/graph.hpp"
#line 6 "library/data-structure/graph.hpp"
using namespace std;
#line 2 "library/_internal/graph-base.hpp"
#line 4 "library/_internal/graph-base.hpp"
#include <type_traits>
using namespace std;
namespace asalib {
namespace _internal {
class graph_base {};
class notweighted_graph_base: public graph_base {};
class weighted_graph_base: public graph_base {};
template<typename T>
concept is_graph = is_base_of_v<graph_base, T>;
template<typename T>
concept notweighted_graph = is_base_of_v<notweighted_graph_base, T>;
template<typename T>
concept weighted_graph = is_base_of_v<weighted_graph_base, T>;
using adjlist_t = vector<vector<pair<size_t, size_t>>>;
using edgelist_t = vector<pair<size_t, size_t>>;
} // namespace _internal
} // namespace asalib
#line 9 "library/data-structure/graph.hpp"
namespace asalib {
namespace graph {
class graph: public _internal::notweighted_graph_base {
public:
graph(): n_vertex(0), n_edge(0) {}
explicit graph(size_t n_vertex): n_vertex(n_vertex), n_edge(0) {
adj_list.reserve(n_vertex);
adj_list.resize(n_vertex);
}
void add_edge(size_t v1, size_t v2) {
assert(0 <= v1 && v1 < n_vertex);
assert(0 <= v2 && v2 < n_vertex);
adj_list[v1].push_back({ v2, n_edge });
adj_list[v2].push_back({ v1, n_edge });
edge_list.push_back({ v1, v2 });
++n_edge;
}
// (v1, v2)
pair<size_t, size_t> get_edge(size_t edgeId) const {
assert(0 <= edgeId && edgeId < n_edge);
return edge_list[edgeId];
}
// (v2, edgeId)
vector<pair<size_t, size_t>> get_adj(size_t vertex) const {
assert(0 <= vertex && vertex < n_vertex);
return adj_list[vertex];
}
// ---------- prototype ---------- //
optional<pair<vector<size_t>, vector<size_t>>> cycle() const;
bool is_connected() const;
optional<pair<vector<size_t>, vector<size_t>>> eulerian_walk() const;
private:
size_t n_vertex, n_edge;
asalib::_internal::adjlist_t adj_list;
asalib::_internal::edgelist_t edge_list;
};
} // namespace graph
} // namespace asalib
#line 11 "library/_internal/graph/eulerian-walk.hpp"
namespace asalib {
namespace _internal {
namespace graph {
template<bool is_directed>
pair<vector<size_t>, vector<size_t>> eulerian_walk(const size_t& n, const edgelist_t& Edges, const size_t& start_v, const size_t& end_v) {
// グラフを変換するパート
vector<queue<size_t>> Graph(n);
for (size_t i = 0; i < Edges.size(); ++i) {
const auto& [u, v] = Edges[i];
Graph[u].push(i);
if constexpr (!is_directed) Graph[v].push(i);
}
vector<bool> used(Edges.size(), false);
// 適当にパスを見つけるやつ (これはオイラー路が存在することが確定してるからできる技)
auto find_path = [&](size_t from, size_t to, vector<size_t>& vs, vector<size_t>& eds) {
size_t now = from;
if (Graph[now].empty()) return false;
do {
assert(!Graph[now].empty());
size_t e_idx = Graph[now].front();
Graph[now].pop();
if (used[e_idx]) continue;
used[e_idx] = true;
eds.push_back(e_idx);
vs.push_back(now);
const auto& [u, v] = Edges[e_idx];
if (u == now) {
now = v;
}
else {
assert(now == v);
now = u;
}
} while (now != to);
vs.push_back(to);
return true;
};
// 適当に start_v -> end_v のパスを作るパート
vector<size_t> vs = {}, eds = {};
find_path(start_v, end_v, vs, eds);
assert(vs.size() == eds.size() + 1);
constexpr size_t ign = -1;
eds.push_back(ign);
// 別の道があれば寄り道して辺を全部使うパート (閉路になるはず)
vector<size_t> res_vs, res_eds;
for (size_t i = 0; i < eds.size(); ++i) {
stack<size_t> v, e;
v.push(vs[i]), e.push(eds[i]);
while (!v.empty()) {
assert(v.size() == e.size());
size_t now = v.top();
size_t e_idx = e.top();
vector<size_t> tmpvs, tmpeds;
if (find_path(now, now, tmpvs, tmpeds)) {
assert(tmpvs.front() == now && tmpvs.back() == now);
assert(tmpvs.size() == tmpeds.size() + 1);
tmpvs.pop_back();
reverse(tmpvs.begin(), tmpvs.end());
reverse(tmpeds.begin(), tmpeds.end());
for (const auto& ver : tmpvs) v.push(ver);
for (const auto& edg : tmpeds) e.push(edg);
}
else {
v.pop(), e.pop();
res_vs.push_back(now);
res_eds.push_back(e_idx);
}
}
}
assert(res_eds.back() == ign);
res_eds.pop_back();
assert(res_vs.size() == res_eds.size() + 1);
assert(res_eds.size() == Edges.size());
return make_pair(res_vs, res_eds);
}
} // namespace graph
} // namespace _internal
} // namespace asalib
#line 2 "library/data-structure/digraph.hpp"
#line 6 "library/data-structure/digraph.hpp"
using namespace std;
#line 10 "library/data-structure/digraph.hpp"
namespace asalib {
namespace graph {
class digraph: public _internal::notweighted_graph_base {
public:
digraph(): n_vertex(0), n_edge(0) {}
explicit digraph(size_t n_vertex): n_vertex(n_vertex), n_edge(0) {
adj_list.reserve(n_vertex);
adj_list.resize(n_vertex);
adj_list_rev.reserve(n_vertex);
adj_list_rev.resize(n_vertex);
underlying_graph = graph(n_vertex);
}
void add_edge(size_t from, size_t to) {
assert(0 <= from && from < n_vertex);
assert(0 <= to && to < n_vertex);
adj_list[from].push_back({ to, n_edge });
adj_list_rev[to].push_back({ from, n_edge });
edge_list.push_back({ from, to });
underlying_graph.add_edge(from, to);
++n_edge;
}
// (from, to)
pair<size_t, size_t> get_edge(size_t edgeId) const {
assert(0 <= edgeId && edgeId < n_edge);
return edge_list[edgeId];
}
// (to, edgeId)
vector<pair<size_t, size_t>> get_adj(size_t vertex) const {
assert(0 <= vertex && vertex < n_vertex);
return adj_list[vertex];
}
// (from, edgeId)
vector<pair<size_t, size_t>> get_adjrev(size_t vertex) const {
assert(0 <= vertex && vertex < n_vertex);
return adj_list_rev[vertex];
}
// ---------- prototype ---------- //
vector<vector<size_t>> scc() const;
optional<pair<vector<size_t>, vector<size_t>>> cycle() const;
bool is_connected() const;
optional<pair<vector<size_t>, vector<size_t>>> eulerian_walk() const;
private:
size_t n_vertex, n_edge;
asalib::_internal::adjlist_t adj_list, adj_list_rev;
asalib::_internal::edgelist_t edge_list;
graph underlying_graph;
};
} // namespace graph
} // namespace asalib
#line 2 "library/graph/connection.hpp"
using namespace std;
#line 2 "library/_internal/graph/connection.hpp"
#line 5 "library/_internal/graph/connection.hpp"
using namespace std;
#line 8 "library/_internal/graph/connection.hpp"
namespace asalib {
namespace _internal {
namespace graph {
bool is_connected(const adjlist_t& adjlist) {
vector<bool> visited(adjlist.size(), false);
function<void(size_t)> dfs = [&](size_t v) {
visited[v] = true;
for (const auto& [u, _] : adjlist[v])
if (!visited[u]) dfs(u);
};
dfs(0);
return all_of(visited.begin(), visited.end(), [](bool v) {
return v;
});
}
} // namespace graph
} // namespace _internal
} // namespace asalib
#line 8 "library/graph/connection.hpp"
namespace asalib {
namespace graph {
bool digraph::is_connected() const { return _internal::graph::is_connected(adj_list); }
bool graph::is_connected() const { return _internal::graph::is_connected(adj_list); }
} // namespace graph
} // namespace asalib
#line 14 "library/graph/eulerian-walk.hpp"
namespace asalib {
namespace graph {
optional<pair<vector<size_t>, vector<size_t>>> digraph::eulerian_walk() const {
constexpr size_t None = -1;
// もし辺がなければオイラーグラフ、任意の頂点を返す
if (edge_list.empty()) [[unlikely]]
return make_pair(vector<size_t> { 0 }, vector<size_t> {});
// 辺がない頂点を除外したグラフを作る
size_t n_vertex_withedge = 0;
vector<size_t> id(n_vertex, None);
for (const auto& [u, v] : edge_list) {
if (id[u] == None) id[u] = n_vertex_withedge++;
if (id[v] == None) id[v] = n_vertex_withedge++;
}
vector<size_t> idrev(n_vertex_withedge, None);
for (size_t i = 0; i < n_vertex; ++i)
if (id[i] != None) idrev[id[i]] = i;
asalib::graph::digraph newGraph(n_vertex_withedge);
for (const auto& [u, v] : edge_list) newGraph.add_edge(id[u], id[v]);
// 有向グラフの場合、基底無向グラフが連結でなければ存在しない
if (!newGraph.underlying_graph.is_connected()) return nullopt;
// オイラーグラフとなるか判定
vector<size_t> in(n_vertex_withedge, 0), out(n_vertex_withedge, 0);
for (const auto& [u, v] : edge_list) ++out[id[u]], ++in[id[v]];
size_t start = None, end = None;
for (size_t i = 0; i < n_vertex_withedge; ++i) {
if (in[i] == out[i]) continue;
if (in[i] + 1 == out[i]) {
if (start != None) return nullopt;
start = i;
continue;
}
if (in[i] == out[i] + 1) {
if (end != None) return nullopt;
end = i;
continue;
}
return nullopt;
}
if ((start == None) xor (end == None)) return nullopt;
if (start == None) {
assert(end == None);
start = end = 0;
}
auto [vertexes, edges] = asalib::_internal::graph::eulerian_walk<true>(n_vertex_withedge, newGraph.edge_list, start, end);
vector<size_t> vertexes_original;
for (const auto& v : vertexes) vertexes_original.push_back(idrev[v]);
return make_pair(vertexes_original, edges);
}
optional<pair<vector<size_t>, vector<size_t>>> graph::eulerian_walk() const {
constexpr size_t None = -1;
// もし辺がなければオイラーグラフ、任意の頂点を返す
if (edge_list.empty()) [[unlikely]]
return make_pair(vector<size_t> { 0 }, vector<size_t> {});
// 辺のない頂点を除外したグラフを作る
size_t n_vertex_withedge = 0;
vector<size_t> id(n_vertex, None);
for (const auto& [u, v] : edge_list) {
if (id[u] == None) id[u] = n_vertex_withedge++;
if (id[v] == None) id[v] = n_vertex_withedge++;
}
vector<size_t> idrev(n_vertex_withedge, None);
for (size_t i = 0; i < n_vertex; ++i)
if (id[i] != None) idrev[id[i]] = i;
asalib::graph::graph newGraph(n_vertex_withedge);
for (const auto& [u, v] : edge_list) newGraph.add_edge(id[u], id[v]);
// 連結でなければ存在しない
if (!newGraph.is_connected()) return nullopt;
vector<size_t> deg(n_vertex_withedge, 0);
for (const auto& [u, v] : edge_list) ++deg[id[u]], ++deg[id[v]];
size_t start = None, end = None;
for (size_t i = 0; i < n_vertex_withedge; ++i) {
if (deg[i] % 2 == 0) continue;
if (start == None)
start = i;
else if (end == None)
end = i;
else
return nullopt;
}
if (start != None && end == None) return nullopt;
if (start == None) {
assert(end == None);
start = end = 0;
}
auto [vertexes, edges] = asalib::_internal::graph::eulerian_walk<false>(n_vertex_withedge, newGraph.edge_list, start, end);
vector<size_t> vertexes_original;
for (const auto& v : vertexes) vertexes_original.push_back(idrev[v]);
return make_pair(vertexes_original, edges);
}
} // namespace graph
} // namespace asalib